
Genesis II Security Architecture
1

Duane Merrill and Andrew Grimshaw

Department of Computer Science

University of Virginia

1 Overview
The security of grid infrastructure is its ability to protect its assets (information, data, services, etc) from

various sources of misuse (i.e., threat). Following the Open Systems Interconnect threat model [ituOsi], the

types of security threat to which networked resources are vulnerable include disclosure or theft of

resources, modification (including destruction) of resources, and resource service interruption. The

purpose of Grid security architecture is to define the security services and related mechanisms that can be

appropriately applied to mitigate such threat. The goal of these services and mechanisms is to make the

costs of unauthorized behavior greater than the potential value of doing so. Without a strong commitment

to meaningful security, many potential adopters would be unable to participate because of undue risk

and/or legal restrictions.

Grid security architecture is complicated by the reality that participants from different administrative

domains will ―come to the table‖ with distinct trust and security infrastructures. This presents challenges

for interoperability, even if all resource interfaces and security mechanisms are well-specified by de facto

community standards. For example, although the service implementations of a particular application (e.g.,

a job execution service) may conform to the same interface, each provider is free to choose the security

mechanisms that satisfy its particular security requirements. The orthogonality between service interface

and security has two important implications: security tokens from one domain may not carry any syntactic

or semantic meaning within another, and different peers may require different compositions of secure

communication mechanisms (e.g., specific encryption or signature actions).

With the paradigm of site-autonomy in mind, OGSA-compliant architectures such as Genesis II are

designed with flexible security architecture in order to support the integration of existing trust

infrastructures rather than force users to adopt a new, singular security model. Genesis II provides services

and mechanisms to federate and broker existing identity, to provide suitable forms of new identity as

necessary, and to configure and discover the secure communication requirements of communicating peers.

This is fundamental to realizing the vision of resource sharing in an environment lacking a single source of

authority.

Although Genesis II is implementation agnostic and uses standard mechanisms, it guarantees neither the

complete interoperability nor the security of all participants. By design, it does not establish a ―lowest

common denominator‖ set of security mechanisms that must be supported by all compliant resources, nor

does it govern the establishment and maintenance of the trust relationships that are ultimately necessary to

provide assurances of authorized usage. Domain administrators are responsible for undertaking threat

assessment for new Grid resources and then using these requirements to select appropriate security

mechanisms. Administrators must also negotiate trust with their counterparts in other domains in order to

configure token brokering services to federate their security infrastructures.

In the following sections, we present the Genesis II models for identity, identity brokering, access control,

and secure communication.

1
 Technical Report CS2009-07, Department of Computer Science, University of Virginia. January 2009.

2 Identity
Identity is one of the most important issues in Grid computing. It is necessary for determining who the

remote party is (authentication), who is allowed to perform what actions (authorization), and who did what

and when (auditing). Genesis II supports a number of identity standards that are defined for Web Services.

These currently include X.509 digital certificate [ituX509, wsX509-1.1], UsernameToken [wsUT-1.1], and

SAML token [saml-2.0, wsSAML-1.1] profiles.

When considering the client-server model of Web services, we often think in terms of resource identities

and user-principal identities. We associate resource identities with virtualized Grid resources (i.e., callees)

and user-principal identities with actors (i.e., callers). Although there are different challenges for managing

resource identities versus user-principal identities, such classification of identity is not mutually exclusive:

Genesis II resources may actively call other resources.

2.1 Resource Identity

A Genesis II resource is a logical entity to which messages can be delivered. In many cases, such entities

are local resources (e.g., files, database tables, job queues, etc.) that have been ―provisioned‖ into the Grid.

Unfortunately, classic resource identities (e.g., file i-nodes, RDMS table names, PBS queue URLs, etc.) are

often unsuitable for Grid use because they are not guaranteed to be universally unique and/or they are not

cryptographically authenticatable.

All Genesis II Grid resources are given X.509 identities, each consisting of an X.509 digital certificate and

a corresponding public/private keypair. These cryptographic identities can be used by clients to ensure that

they are indeed communicating with the intended Grid resource (as opposed to being spoofed).

Figure 1: X.509 certificate chain of trust for Genesis II resource identities

In many cases, Grid resources and their identities are automatically generated and destroyed at sufficient

rates and quantities as to preclude human involvement in the trust process of vetting identity. The depth of

the certificate chain for automatically generated resource identities reflects this dilution of trust. A typical

certificate chain of trust for a Genesis II resource has four entries:

1. The automatically generated end-entity certificate identifying the logical resource

2. The automatically generated certificate of its parent Web Service instance (e.g., the Web Service

instance for RNS, ByteIO, BES, etc.), which is also a Genesis II resource

3. The certificate of the hosting Genesis II Container (which is also used for HTTPS transport

connections), configured by the domain administrator

4. A global Certificate Authority (CA) that conspiring domain administrators configure to be

―trusted‖ by all Grid participants.

2.2 User-principal Identity

User-principal tokens are security credentials that state different facts about the caller. For example, one

security credential may claim that the caller is John Smith as vetted by State University, and another that

indicates they are a member of the Astronomy Department. When using Genesis II, a caller can convey

arbitrarily many identity tokens.

CA

Cert

Container

Cert

Endpoint

Cert

Resource

Cert

User-principal tokens are used by Genesis II resources to perform access-control. When performing an

operation on a Genesis II resource, the user-principal credentials conveyed within the request message are

checked against that resource’s security policy to decide whether to allow or deny the operation.

2.2.1 Existing Identities

Genesis II is very flexible with regard to user-principal tokens. In many cases, Grid participants will

already possess identities supplied by their organization. The Genesis II login commands make it simple to

acquire these credentials for Grid use, and security tools allow for the inclusion of these credentials within

resource authorization policies.

For example, users can use the login tool to acquire an existing X.509 credential stored within the Windows

keystore or other popular keystore formats (e.g., PKCS12, JKS, etc.). The corresponding X.509 digital

certificate is their identity and is conveyed within outgoing messages; the private key is used for signature

and never leaves the calling process’s address space. The login command also allows users to convey

UsernameToken credentials within outgoing messages.

Alternatively, users may have identities that are managed by directory systems such as NIS/YP, LDAP, etc.

Genesis II can integrate with these systems to virtualize these identities into the Grid: Genesis II login

commands can authenticate to these services, and their identity entries can be specified within resource

authorization policies.

2.2.2 Delegated Identities

Although Genesis II allows clients to use a specific X.509 identity for message/transport-level

authentication, the ability to delegate identities/roles to a single shorter-lived, transient identity has several

advantages. Delegation allows users to obtain their roles/identities when and where they are needed

without exposing the associated private keys to the Grid client. Delegation also allows clients to convey

multiple identities/capabilities that have been cryptographically delegated to the single X.509

certificate/keypair used for authentication in message/transport-level protocols.

Figure 2: Nested SAML assertions used for cryptographic identity delegation: “Alice says Bob can be

Alice, Bob says Carol can be Bob”.

 Restriction
s

Carol Cert

Alice Cert

Restriction
s

Bob Cert

Bob Sig

Alice Sig

For example, the default process of acquiring an X.509 identity (e.g., John Smith) during login incorporates

a signing request to delegate that identity to the Grid Shell process (or IFS process, or OGRSH process),

which itself has its own X.509 identity. Their private key is used to sign a SAML document asserting that

―John Smith says Grid Shell XYZ can be John Smith for 24 hours‖. In this fashion, a Genesis II process

such as the Grid Shell can use a single X.509 certificate/keypair for authentication within

message/transport-level protocols, yet still convey multiple identities/capabilities that have been

cryptographically delegated to it.

Although SAML assertions can support delegation chains of arbitrary depth, the login tool has options that

limit the duration and number of subsequent delegations allowable for an identity credential. For example,

suppose the Grid Shell wishes to further delegate John Smith’s identity to a job queue resource. The

identity conveyed in the job-submission request is an enclosing SAML document with nested, signed

statements asserting that ―John Smith says Grid Shell XYZ can be John Smith for 24 hours, Grid Shell XYZ

says Queue 123 can be Grid Shell XYZ‖. Hence Queue 123 can perform duties on behalf of John Smith,

such as scheduling the job on an available BES when the time is appropriate.

The primary advantage of performing delegation via SAML assertions of this form, as opposed to using

X.509 Proxy Certificates [x509Proxy], is that the identity of the delegatee is always known. X.509 Proxy

certificates do not carry the subject of the delegatee; only the delegator.

3 Identity Provider Resources

3.1 IDPs for New Identities

New Grid identities can be created and managed using Genesis II Identity Provider (IDP) resources. An

IDP is a Grid resource that delegates security credential(s) to the caller. IDP resources are exposed via a

Genesis II implementation of the WS-Trust [wsTrust-1.3] Security Token Service (STS) Web service

interface. Each Genesis II Container hosts an STS Web service instance that can be used to create and

manage multiple IDP resources.

By creating new IDP resources, one can create new security credentials that can be used to indicate facts

about a user-principal, such as identities (e.g., Jane Smith), roles (e.g., Faculty), privileges (e.g., Level 5),

etc. IDP resources are typically given names and linked into the RNS namespace.

3.2 IDPs for Delegating Existing Identities

Many users are loath to let the private key for an existing security credential leave their machine/device.

For example, a user-principal may wish to operate as John Smith, but may not want to expose the

corresponding private key to the local Geneisis II installation, portal, etc. Such scenarios arise for mobile

users who may be accessing the Grid from multiple clients over a period of time. In this case, such a user

can create an IDP resource JSmithProxy around a delegated credential for their John Smith identity: ―John

Smith says IDP resource JSmithProxy can be John Smith for 30 days‖. By configuring login access to the

IDP resource JSmithProxy to allow callers who carry a particular UsernameToken credential, the user-

principal can request a restricted John Smith credential from any location using the login tool. The IDP’s

credential is then further delegated to the Grid client: ―John Smith says IDP resource JSmithProxy can be

John Smith for 30 days, JSmithProxy says Grid Shell 123 can be JSmithProxy for 24 hours‖.

3.3 IDPs for NIS, LDAP, etc.

Genesis II also allows administrators to configure identity provider service endpoints that virtualize the

identities managed within an external JNDI-compatible directory system (e.g., NIS, LDAP, etc.).

Figure 3: The “CSYP” STS shown here virtualizes the UVA Computer Science NIS directory as a

collection of identity-provider resources

As an example, the interface of a NIS-configured STS endpoint is an RNS directory whose entries are IDP

resources for the individuals who have NIS accounts in the specified NIS domain. A NIS IDP resource is

similar to an IDP for a new identity in that a new X.509 certificate for the virtualized NIS account resource

is created. This certificate identifies the user, the user's NIS UID, and the Grid NIS endpoint. In order to

acquire a delegated security credential from a NIS IDP (i.e., login to it), the user must carry the specific

UsernameToken token that can be used to authenticate the password hash of their NIS account.

3.4 Using IDPs for Single-Sign-On

In many cases, a user may wish to acquire multiple security credentials for their Grid session. It may be

tedious and inconvenient to individually use the login command to obtain delegated credentials from every

identity, group, and role IDP resource that the user-principal belongs to. To facilitate single-sign-on

capability, our IDP resources implement the RNS directory interface. For example, RNS links to IDP

resources such as FacultyGroup and QueueAdministrators can be placed within the directory exposed by

the JSmithProxy IDP resource. This configuration signifies that a user-principal logging into JSmithProxy

will automatically obtain delegated credentials for all three restricted identities.

Figure 4: The “dmerrill” IDP show here contains links to the “VCGR” group and the “dgm4d” NIS

entry, enabling single-sign-on acquisition of all three credentials from “dmerrill”.

4 Access Control
The philosophy of site-autonomy empowers resource providers with the ability to specify security policies

for their resources as they see fit. Each resource provider is responsible for ensuring that their resources are

configured to allow only the desired access.

In Genesis II, access control decisions are made by pluggable authorization modules. This extensible

design allows Genesis II installations to accommodate alternative authorization technologies. The default

module uses access control lists (ACLs) to make authorization decisions at the granularity of logical

resources (as opposed to doing so at the container or Web service granularity). When using this module,

each Genesis II Grid resource maintains a set of three access-control lists: a read-access list, a write-access

list, and an execute-access list. These lists can be populated with user-principal identities to allow varying

degrees of access to different caller-entities bearing different security credentials.

For example, one can use the Genesis II security tools to add the FacultyGroup IDP resource to the read

ACL of a ByteIO resource Foo. This has the effect of granting read-access of Foo to all users carrying the

FacultyGroup credential. The security tools can add UsernameToken identities to these access-control

lists, as well as identities from X.509 .cer certificate files that may be stored in the local filesystem or in the

RNS Grid namespace.

As discussed in the previous section, Genesis II supports ―group credentials‖ by allowing individuals to

acquire multiple credentials, some of which can be used to logically indicate group roles or privileges.

Genesis II also supports another grouping method that exploits the certificate-chain hierarchy conveyed

within a user-principal’s digital certificate. For example, one can configure the read-access list for file Foo

to include the UVa PKI Standard Assurance identity. This has the effect of granting read-access to all

users carrying security credentials whose certificates chain to the UVa PKI Standard Assurance certificate.

5 Secure Communication
Threat assessment is the process of identifying the specific security requirements for a given asset. In

addition to establishing authorization requirements (i.e., who is allowed proper access), a threat assessment

for a prospective resource to be exposed via the Grid may identify confidentiality and integrity

requirements for the protection of communication over an untrusted network (e.g., the Internet).

Confidentiality is the assurance that only those principals authorized for information access are capable of

doing so. Confidentiality guarantees in an insecure networked environment are usually derived through

message encryption.

Integrity is the assurance that unauthorized changes made to communication messages can be detected by

the recipient. Cryptographic digital signatures are generally used to enable the detection of message

tampering.

Genesis II uses the SOAP protocol for messaging between communication endpoints. Fundamentally, the

security of SOAP messages is affected by two aspects:

a) Binding to a particular network transport protocol. The SOAP protocol is extremely flexible. It

can be enacted over virtually any other communication protocol, such as HTTP, SMTP, JMS [jms-

1.1] message queues, etc. Genesis II uses HTTPS as the default transport, which uses anonymous-

client SSL/TLS [tls-1.0] to provide security guarantees for properties such as container

authentication, integrity, and confidentiality.

b) Message-level credentialing and protection. The SOAP protocol is sufficiently general in that it

can support virtually any token credentialing system. In particular, Genesis II is compliant with

the Web Services Security [wsSec-1.1] (WS-Security) family of specifications, a set of standards

that define a general-purpose mechanism for associating security tokens with message content.

WS-Security encompasses a set of profiles for encoding popular token types (e.g., X.509

[wsX509-1.1], Kerberos [wsKerb-1.1], SAML [wsSAML-1.1], and UsernameToken [wsUT-1.1]

tokens). The WS-Security core specification also defines the application of XML-Encryption

[xmlEnc02] and XML Digital Signature [xmlSig02] to provide end-to-end messaging integrity and

confidentiality without reliance upon support from the underlying communication protocol.

In order to achieve real-world interoperability, Genesis II is also compliant with the WS-I Basic Security

Profile [wsiBsp-1.0] (WS-I BSP). The WS-I BSP provides guidance on the use of WS-Security and its

associated security token formats to resolve nuances and ambiguities between communicating

implementations intending to leverage common security mechanisms.

Genesis II resources are intended to be configured with diverse integrity, confidentiality, and authorization

requirements. These requirements are independent of the resource’s service interface, yet still affect

message format. As such, interoperability between Genesis II peers is dependent upon the ability to

normatively describe and advertise individual secure communication requirements.

Genesis II adheres to the OGF Secure Addressing Profile [secAddr-1.0] (SecAddr) to distribute secure

communication requirements within WS-Addressing endpoint references (EPRs). More specifically, these

requirements are conveyed as WS-SecurityPolicy documents that have been embedded within EPRs. The

WS-Addressing endpoint reference data structure is a useful construct because it provides the ―invocation

context‖ for a service endpoint—all of the necessary information that a client requires to establish

meaningful communication. Additionally, the Genesis II is capable of signing EPR documents in order to

provide guarantees of trust regarding the identity of the minter and the integrity of the EPR; useful

properties given the OGSA models of storing and exchanging EPRs within intermediary services.

The EPR for a given Genesis II resource reflects the authorization token types required by that resource as

well as any requirements for digital signature that would be necessary to authenticate those tokens. Genesis

II security tools can also configure resources to have additional message-level confidentiality (and/or

integrity requirements, if not already necessary for authentication).

6 References

ituOsi ITU. Security Architecture for Open Systems Interconnection for CCITT Applications. In

CCITT Recommendation X.800, 1991

ituX509 ITU-T. Information technology – Open Systems Interconnection – The Directory: Public-

key and attribute certificate frameworks. In ITU-T Recommendation X.509, 2005

wsX509-1.1 OASIS. Web Services Security X.509 Certificate Token Profile 1.1. OASIS Standard

Specification, 2006.

wsKerb-1.1 OASIS. Web Services Security Kerberos Token Profile 1.1. OASIS Standard

Specification, 2006.

wsSAML-1.1 OASIS. Web Services Security SAML Token Profile 1.1. OASIS Standard Specification,

2006.

wsUT-1.1 OASIS. Web Services Security Username Token Profile 1.1. OASIS Standard

Specification, 2006.

wsSec-1.1 OASIS. Web Services Security: SOAP Message Security 1.1. OASIS Standard

Specification, 2006.

saml-2.0 OASIS. Assertions and Protocol for the OASIS Security Assertion Markup Language

(SAML) V2.0. OASIS Standard, March 2005.

wsSecPol-1.2 OASIS. WS-SecurityPolicy 1.2. OASIS Standard Specification, 2007

wsTrust-1.3 OASIS. WS-Trust 1.3. OASIS Standard, 2007.

tls-1.0 T. Dierks and C. Allen. The TLS Protocol Version 1.0. IETF RFC 2246, 1999.

xmlEnc02 W3C. XML Encryption Syntax and Processing. W3C Recommendation, 2002.

xmlSig02 W3C. XML-Signature Syntax and Processing. W3C Recommendation, 2002.

wsiBsp-1.0 WS-I. Basic Security Profile Version 1.0. WS-I Final Material, 2007.

secComm-1.0 D. Merrill. Secure Communication Profile 1.0. Open Grid Forum, GFD.132, 2007.

secAddr-1.0 D. Merrill. Secure Addressing Profile 1.0. Open Grid Forum, GFD.131, 2007.

jms-1.1 M. Hapner et al. Java Message Service Specification 1.1. Sun Microsystems, Inc., 2002

x509Proxy S. Tueke et al. Internet X.509 Public Key Infrastructure (PKI) Proxy Certificate Profile.

IETF RFC 3820, 2004.

