
January 18, 2012

Running a Job with XSEDE

Andrew Grimshaw and Karolina Sarnowska-Upton

Audience & Goals

• Audience
– End users and developers who want to

• Access and use NSF funded XSEDE compute resources

• Create secure shared compute environment with
collaborators around the world

• Access and use compute resources available via XSEDE
located at other institutions

– Advanced user support personnel who work with
end users and developers

• Goals: at the end of this tutorial you will
– Be able to define and run jobs on XSEDE

Prerequisites

• Installed Genesis II client software

• Grid account with permission to run jobs

• Basic grid shell and client GUI understanding

3

XSEDE Activities (a.k.a. jobs)

• What are jobs in XSEDE?

• How are jobs executed?

• How are jobs specified?

• How to interact with jobs while they are running?

• Compute Grid Use module

– JSDL tool

– Grid queue

– Interacting with jobs

– Job state change notification

What are Jobs in XSEDE?

• A job is a unit of work that executes a program
– Really pretty generic: much like PBS or LSF job
– Program may be sequential, threaded, hybrid GPGPU program, or

traditional parallel using MPI or OpenMP
– Programs can be command line programs or shell scripts that take zero

or more parameters

• Jobs MAY specify files to be staged in before execution and out after
execution
– This MAY include executables and libraries

• Jobs MAY specify file systems to mount, e.g., SCRATCH or GFFS
(Global Federated File System)

• Jobs MAY specify resource requirements such as operating system,
amount of memory, number of CPU’s, or other matching criteria

• Jobs MAY be parameter sweep jobs with arbitrary number of
dimensions

5

How are Jobs Executed?

• Job are executed by grid resources that
implement the OGSA Basic Execution Services
(BES) interface

– These are referred to as BESes

• Users submit jobs directly to BES or to a grid
queue

6

BESes: Basic Execution Services

• BESes run jobs on particular compute resources
– Manage data staging for jobs

– Monitor job progress/completion

– Maintains job state

• “Compute resources” may be workstations,
clusters, or supercomputers

• Each BES has a set of resource properties such as
operating system, memory, number of cores, etc.
that can be used to match jobs to BESes for
execution

XCG Tutorial

Grid Queues

• Work much like any other queuing system

• Grid users submit jobs to grid queue

• Maintain:
– List of (BES) compute resources available for scheduling

– Description of capabilities of each compute resource

– List of jobs and statuses

• Match jobs to available compute resources
– Ask matching resources to run jobs

• Monitor job progress/completion

• Cmd-line and GUI tools to manage jobs in queue
– qsub, qstat, qkill, qcomplete, queue manager

XCG Tutorial

Grid Queues – Cmd-line View

• Check queue/job status with:

qstat <queue -path>

XCG Tutorial

Grid Queues – GUI Queue Manager

10

Click in the Max Slots column in the row for the desired resource, type in a

number, and save.

• Queue Manager presents information about jobs
and resources currently managed by queue

Grid Queues – Job Execution

XCG

Tutorial

jo
b

1

jo
b

4

jo
b

3

jo
b

2

Grid -Queue

BES1

BES3 BES2 BES executes job

Job Execution – The Working Directory

XCG

Tutorial

BES1

job1 job3 job2

activities

runA runB

my_job_data

BES stages data

to/from job working

dir as specified in

JSDL

BES creates unique

working dir for

each job

User submits job/queue schedules on BES

working-dir

How are Jobs Specified?

• Jobs are specified using the Open Grid Forum
standard Job Specification Description Language
1.0 (JSDL)
– XML-based language
– Widely adopted
– Not intended for human consumption

• Job information that is specified
– Identity
– Application description
– Resource requirements
– Data staging

13

XCG Tutorial

JSDL Fragment

Gdfg

Job Name

Resource

Requirement

Application

Description

Creating JSDL Files using the Grid Job Tool

• Manual Creation:
– Use editor to create XML file
– Difficult and error-prone due

to XML’s eccentricities
– Easiest method: start with

existing JSDL and modify
(carefully)

• Using Grid Job Tool:
– GUI builder for JSDL files
– User describes job in GUI
– Description can be saved as

GridJobTool “project” file
• edit/re-use project to create

new JSDL files

– Automatically generates XML
from user provided
description

– Started with grid command
job -tool

XCG Tutorial

How to Launch Job Tool from GUI Browser

• Select directory where you
want JSDL project file located

 OR

• Select execution container
(BES or queue) where you
want to execute job

16

How are Jobs Submitted for Execution?

• Recall: Jobs submitted to BES or grid-queue

• Jobs can be submitted via

– Grid shell run (to BES) or qsub (to queue)
commands

– JSDL tool menu option from GUI grid shell

– Copying JDSL file to BES’s “submission-point”
pseudo-directory

17

Using “run” to Execute Jobs

• Check command syntax

– help run

• EXAMPLE run command for gnomad

– run --jsdl=<jsdf-file> <path-to-bes>

18

Using a Grid Queue to Execute Jobs

• General purpose XSEDE grid queue location
/queues/grid -queue

• Submission syntax
qsub <queue -path> <JSDL -file>

OR
cp <queue -path>/submission -point <JSDL -file>

• Example submission
qsub /queues/grid -queue local:gnomad.xml

19

Job Submission Exercises

• GOAL: Run some simple jobs

– Create and execute hostname.jsdl

• Single job and parameter sweep

• Example files located at

 /examples

20

Interact with Jobs via Queue Manager

• You can stop, check status, examine job
history, or reschedule a job

• You can interact with a job’s working directory
if job is in a running state on a (Genesis II) BES

21

View Job Information in Queue Manager

• Status
– QUEUED: job waiting to be scheduled on BES resources
– REQUEUED: job failed execution at least once and has been automatically re-queued
– ERROR: job failed the maximum allowable execution attempts and will not be re-queued
– On <BES name>: job passed to <BES name> for execution

• Note: Does not connote status within BES (job may be running, queued, staging data, etc.)

– FINISHED: job executed successfully

• Attempts
– Number of times queue has tried schedule job for execution
– Some failures do not increment attempts

• grid software failures
• job preempted due to local BES policies

• Ticket
– Unique ID assigned by grid queue to job on submission

• Queue keeps status of active and completed jobs
– Jobs in final status (ERROR and FINISHED) need to be cleaned up by user

qcomplete <queue name> { --all | <job ticket>+ }

XCG Tutorial

Examine Job History in Queue Manager

23

• Right-clicking on job provides information about
job’s history in different levels of detail

Scratch file system

• Persists on BES between runs

• Good for caching large or frequently used files

24

Interact with Job Working Directory

• When using Genesis II BES resources, job working directory is
accessible via GFFS

• Working-directory is located in queue where job was submitted at
 <queue -path>/jobs/mine/running

• For each running job, there is a directory with job ticket number
with two entries:
– status

• file containing state of job (e.g. queued, running)

– working-dir
• session execution directory of running job
• read/write/create/delete files here to interact with running job

• If job was submitted directly to BES, job directory is located at
<bes -path>/activities

25

XCG Tutorial

JSDL File Contents Explained

• Identifier Info
– Descriptive information

about job, e.g. job name

<JobIdentification>

 <JobName>Adder</JobName>

</JobIdentification>

<Resources>

 <OperatingSystem>

 <OperatingSystemType>

 <OperatingSystemName>LINUX

 </OperatingSystemName>

 </OperatingSystemType>

 </OperatingSystem>

</Resources>

• Resource Requirements

– Describe resources job
requires

• Memory

• OS

• Architecture

• Number of processors

• Run time

http://www.cs.virginia.edu/~vcgr/userrequest/
http://www.cs.virginia.edu/~vcgr/wiki/index.php/Genesis_II_Downloads

XCG Tutorial

JSDL File Contents Explained

• Application Description
– Describe execution

• Executable name
• Arguments
• Routing for stdout and

stderr

<Application>

 <POSIXApplication>

 <Executable>adder.sh</Executable>

 <Output>stdout</Output>

 <Argument>seven.dat</Argument>

 <Argument>fourty-two.dat</Argument>

 <Argument>sum.dat</Argument>

 <Argument>10</Argument>

 </POSIXApplication>

</Application>

http://www.cs.virginia.edu/~vcgr/userrequest/

XCG Tutorial

JSDL File Contents Explained

• DataStaging
– Describe data to copy in/out
– Several transport options:

• http
• scp (secure copy)
• RNS (grid directory structure)
• Email (out only)

– Copy in (data staging source):
• Source is URL of remote file to

be copied in
• FileName is name within job

working directory where file will
be copied to

– Copy out (data staging target):
• Target is URL of remote file to

be copied to
• FileName is name within job

working directory of file to be
copied out

– Other file handling info

<DataStaging>

 <FileName>adder.sh</FileName>

 <CreationFlag>overwrite</CreationFlag>

 <DeleteOnTermination>true</DeleteOnTermination>

 <Source>

 <URI>http://www.cs.virginia.edu/adder.sh</URI>

 </Source>

</DataStaging>

<DataStaging>

 <FileName>sum.dat</FileName>

 <CreationFlag>overwrite</CreationFlag>

 <DeleteOnTermination>true</DeleteOnTermination>

 <Target>

 <URI>rns:sum.dat</URI>

 </Target>

</DataStaging>

XCG Tutorial

Example JSDL

Gdfg

Job Name

Resource

Requirement

Application

Description

XCG

Tutorial

Gdfg

Data Staging

Requests

